
Unveiling community structures in weighted networks

Nelson A. Alves
Departamento de Física e Matemática, FFCLRP Universidade de São Paulo, Avenida Bandeirantes 3900, CEP 14040-901,

Ribeirão Preto, São Paulo, Brazil
�Received 28 February 2007; published 4 September 2007�

Random walks on simple graphs in connection with electrical resistor networks lead to the definition of
Markov chains with transition probability matrix in terms of electrical conductances. We extend this definition
to an effective transition matrix Pij to account for the probability of going from vertex i to any vertex j of the
original connected graph G. Also, we present an algorithm based on the definition of this effective transition
matrix among vertices in the network to extract a topological feature related to the manner by which graph G
has been organized. This topological feature corresponds to the communities in the graph.
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I. INTRODUCTION

Network modeling is becoming an essential tool to study
and understand the complexity of many natural and artificial
systems �1�. Applications �2–5� include technological net-
works such as the Internet, the World Wide Web, and the
electric power grid; biological networks such as metabolic
�6–8� and amino acid residue networks �9–12�; and far more
studied, social networks. This understanding follows from
the statistical characterization of their topological properties
usually related to complex networks. In general, the statisti-
cal analysis includes the degree distribution P�k�, the aver-
age degree �k�, the clustering coefficient C, the “between-
ness” of a vertex i and “assortative mixing” describing the
correlations among vertices in the network.

Currently, an important issue within complex network
field is the study and identification of community structure, a
problem also known as graph partitioning. Many definitions
of community are presented in the literature. In essence, a
community is a group of vertices that are more highly con-
nected to each other than to vertices in other groups. A suc-
cessful method to identify communities should find auto-
matically the meaningful groups of the network. Moreover,
the method needs to perform that task in computer times that
are not prohibitive for large network sizes.

Various methods have been proposed to identify commu-
nities in networks �13,14�. In particular, some methods have
been based on betweenness measures �15�, random walks
�16,17�, resistor network �18�, Laplacian eigenvalues
�19,20�, quantitative definitions of community structures in
networks �21� or on benefit functions, where modularity is an
example �15,19�. Those methods discover communities in
computation time that typically scales with the network size
n as n3 or even n4. There is a method that scales linearly in
time but needs a parameter-dependent consideration �18�.
This method views the network as a two-dimensional �2D�
resistance circuit with current flowing through all edges rep-
resented by resistors. The automatic community finding pro-
cedure is hampered by the need of electing two nodes �poles�
that lie in different communities and by the introduction of a
threshold in the voltage spectrum.

Here we show how random walkers on graphs, also in
connection with electrical networks, unveil the network com-

munity structure throughout an hierarchical connection of
vertices. Our method combines the Laplacian eigenvalue ap-
proach with electrical network theory. A brief review of how
the spectral graph theory can characterize the structural prop-
erties of graphs using the eigenvectors of the Laplacian ma-
trix has been presented by Newman �19�.

Our method relies on a generalization of the usual transi-
tion probability matrix P. The matrix element Pij is the prob-
ability for a walk from vertex i on a weighted graph to an
adjacent vertex j. We introduce an effective transition matrix
that also accounts for hops on the graph. This is achieved by
evaluating the conductances, the inverse of resistances, be-
tween any two vertices. By defining a similarity matrix as a
function of the effective transition matrix elements, it is pos-
sible to extract a topological feature related to the manner
graph G which has been organized. It turns out that this
topological feature corresponds to hierarchically connected
classes of vertices which form communities in the network.

To explain our method, we present the essential of the
spectral analysis of Laplacian matrices in Sec. II. In Sec. III
we present the arguments leading to the similarity matrix that
sets a scale to extract the community structure. In Sec. IV we
describe how to implement the algorithm and show the re-
sults for the karate club network studied by Zachary �22� and
for the model designed by Ravasz and Barabási �23�, an
example of network with the scale-free property and modular
structure. Section V concentrates our discussions on
weighted graphs and Sec. VI contains our conclusions.

II. LAPLACIAN EIGENVALUES AND TRANSITION
MATRIX

Let us consider a simple graph G, i.e., undirected and with
no loops or multiple edges, on a finite vertex set V
= �1,2 , . . . ,n� and edge set E, represented by the adjacency
matrix A. The degree ki for each vertex i is obtained from the
adjacency matrix A as ki=	 j=1

n Aij. For nonweighted graphs,
the symmetric n�n adjacency matrix takes values Aij =1, if
there is an edge connecting vertices �i , j� and 0 otherwise.
Thus, ki counts the number of edges that connect the selected
vertex i to other vertices. This extends naturally to the
weighted adjacency matrix which we treat in Sec. V.

PHYSICAL REVIEW E 76, 036101 �2007�

1539-3755/2007/76�3�/036101�6� ©2007 The American Physical Society036101-1

http://dx.doi.org/10.1103/PhysRevE.76.036101


For our purpose we study the graph G through a positive
semidefinite matrix representation. This is achieved in the
usual manner using the Laplacian. The Laplacian matrix of a
graph G on n vertices, denoted by L�G�, is simply the matrix
with elements

Lij = 
ki if i = j ,

− 1 if i and j are adjacents,

0 otherwise,

�1�

which corresponds to the degree diagonal matrix minus the
adjacency matrix, L=K−A. The Laplacian matrix has a long
history. It was introduced by Kirchhoff in 1847 with a paper
related to electrical networks �24� and consequently is also
known as the Kirchhoff matrix.

The Laplacian matrix is real and symmetric. Moreover, L
is a positive semidefinite singular matrix with n eigenvalues
�i and eigenvectors vi. If we label the eigenvalues in increas-
ing order �1��2� ¯ ��n, we have L�G�v1=0. The eigen-
value �1=0 is always the smallest one and has the normal-
ized eigenvector v1= �1,1 , . . . ,1� /�n. Since the matrix L�G�
is singular, it has no inverse, but in such cases it is possible
to introduce the so-called generalized inverse �L†� of L ac-
cording to the Moore and Penrose definition �25�.

Among many properties for the second smallest eigen-
value �2�G�, known as the algebraic connectivity, we recall
that �24,26� �2�G�=0, if and only if, G is not connected. For
connected networks, the eigenvector components of the first
non-null eigenvalue ��2� have been applied as an approxi-
mate method for grouping vertices into communities
�19,20,27�. However, the success in partitioning depends on
how well �2 is separated from other eigenvalues.

From now on we identify the graph G= �V ,E� with an
electrical network connected by edges of unit resistances
�28,29�. A random walk on G is a sequence of states �verti-
ces� chosen among their adjacent neighbors. To describe the
overall behavior of a walker on G, one needs to go beyond
the usual analysis of Markov chains with a transition matrix
Pij, probability to go from vertex i to an adjacent vertex j, to
include also hops, i.e., moves across the graph. For this end,
we evaluate the effective resistances rij between all distinct
vertices i and j of G. Those effective resistances rij can be
numerically evaluated by means of the electrical network
theory as �30,31�

rij = �L†�ii + �L†� j j − �L†�ij − �L†� ji, �2�

for i� j and rij =0 for i= j. Here, L†�G� is the Moore-Penrose
generalized inverse of the Laplacian matrix L�G�. Its defini-
tion amounts to write L†�G� as

�L†�ij = 	
k=1

n−1
1

�k
vkivkj . �3�

This leads to a simple formulation of the effective resistances
between all pairs of vertices as a function of the eigenvalues
and eigenvectors of L�G�,

rij = 	
k=1

n−1
1

�k
�vki − vkj�2. �4�

As a natural generalization, it is convenient to define the
effective conductances cij for all pairs of vertices �i , j� as
cij =1/rij, for i� j.

As a consequence of the above results it is possible to
extend the usual random process that moves around through
adjacent states i and j to hops on the graph. We define the
hop transition probability from vertex i to any vertex j by

Pij =
cij

ci
, �5�

where cij is the effective conductance from i to j and ci
=	 jcij. Since a connected network is considered, the prob-
ability that a walker who begins the run at any given vertex
i and reaches any other given vertex does not vanish.

III. METHOD

Although Pij is not necessarily equal to Pji, it is possible
to describe hierarchical classes of states perceived by the
walker as follows.

First, we consider the generalized “distance” expression,

dij
�q� =

� 	
k�i,j

n

Pik − Pjkq�1/q

n − 2
, �6�

where q is a positive real number, as a similarity measure
between any vertices. Small dij

�q� would imply high similarity
between i and j and could be used to set a hierarchical clas-
sification. Unfortunately this measure does not provide a
good score to classify those states into communities. We
have realized that the fluctuations Sij in Pik− Pjk indeed play
the main role for that classification. Let us take q=1 and
define

d̄ij =

	
k�i,j

n

Pik − Pjk

n − 2
�7�

as the average “distance” between i and j. The standard de-
viation between those vertices is given by

Sij = � 1

n − 3 	
k�i,j

n

�Pik − Pjk − d̄�i, j��2�1/2

. �8�

As a matter of fact, this quantity gives a better description of
the similarity among the vertices because it is a more sensi-
tive measure than the average value in Eq. �6�. The impor-
tance of those fluctuations to classify vertices into commu-
nities may be surmised saying that we should not ask how far
away two vertices are, but who are their neighbors.

Second, we explore the behavior of Pij. A low transition
probability to go from state i to j means that state j is less
accessible from state i. High transition probabilities among
states define classes of easily connected states. This is better
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understood in terms of 1/ Pij. Since the elements Pij are not
necessarily symmetric, we describe how close vertices i and
j are by defining distance as the min�1/ Pij ,1 / Pji�
=1/max�Pij , Pji��1/ P�ij�

max. In other words, the quantity

1 / P�ij�
max establishes how close those vertices are and in this

way sets levels of transient classes on G�V ,E�.
Third, in order to have a well-defined class of states we

should expect small total transition probability for leaving it.
Let us also introduce the notation P�ij�

min�min�Pij , Pji�. Thus,

a large value of �ij � P�ij�
max− P�ij�

min is a consequence of a small

value for the leaving probability P�ij�
min and large value for

P�ij�
max.

Therefore, we achieve the desired hierarchical analysis by
defining heuristically a similarity matrix �or “distance ma-
trix”� D as

Dij = Sij

max��ij,P�ij�
min�

P�ij�
max . �9�

Comparative values of P�ij�
min, for different �i , j� pairs, may be

translated as a penalty when they are rather large, which has
an intimate connection with �ij. Thus, the maximum be-
tween �ij and P�ij�

min enters in Eq. �9� as an extra term to help
set a similarity scale. As we will show in the next sections,
the symmetric matrix D is able to unveil a hierarchical struc-
ture of states.

IV. EVALUATING COMMUNITY IDENTIFICATION

To understand the meaning of those transient classes we
investigate in some examples the structure of G�V ,E� en-
coded by the similarity matrix. Our analysis reveal well-
defined classes of vertices. They occur at different levels of
the hierarchical tree under Dij with the interesting interpre-
tation of communities, i.e., with the structure of well-defined
subnetworks.

A. Performance on artificial community graphs

Before discussing a particular issue on how to implement
the algorithm we report its performance on graphs with a
well-known fixed community structure �15�. Our method
was tested on large number of graphs with n=128 vertices
and designed to have four communities each with 32 verti-
ces. Each graph is randomly generated with probability pin to
connect vertices in the same community and probability pout
to those vertices in different communities. Those probabili-
ties are evaluated in order to make the average degree of
each vertex equal to 16. The test amounts to evaluate the
fraction of vertices correctly classified as a function of zout,
the average number of edges a given vertex must have out-
side of its own community. Our algorithm classifies correctly
vertices into the four communities for small values of zout,
decreasing its performance towards zout=8. We have, for ex-
ample, the fractions 0.99±0.01, 0.95±0.01, 0.81±0.02,
0.57±0.03, respectively, for zout=5 ,6 ,7, and 8. The error bar
was evaluated over 100 randomly generated graphs. Those
results are competitive with the performance obtained by the

algorithms compared in Ref. �14�. Moreover, we stress that
the proposed method is fully parameter independent. Also,
its computational cost is limited by the state-of-art in com-
puting the eigenvalues and eigenvectors of symmetric matri-
ces. In general it amounts to initial O�n3� operations, with
subsequent less expensive iterations O�n2�.

B. A graph with leaves

The method is quite simple and much of the computer
time is spent in calculating the eigenvalues and eigenvectors
of L. All that remains to calculate is the effective resistances
in Eq. �4� and, with the elements Pij, the final similarity
matrix D in Eq. �9�. However, some care is needed when the
graph presents what we call leaves. This is explained as fol-
lows.

We present in Fig. 1 a small graph to display the informa-
tion contained in the matrix D and how to perform the hier-
archical analysis. This example shows a graph containing a
subgraph with treelike topology. A tree is a connected acyclic
graph. In this example, the tree is the subgraph with vertex
numbers 5, 6, and 7, which we call leaves. Their effective
resistances are r56=r57=r35=1 and therefore we have r36
=r37=2. For treelike subgraphs the effective resistances cor-
respond to the number of edges �ij connecting vertices i and
j. Therefore, rij =�ij for acyclic branches. Also r48=1 be-
cause there is only one way of reaching vertex 8 from vertex
4. On the other hand, whenever we have different paths join-
ing adjacent vertices �i , j�, we obtain rij �1 as a consequence
of calculating the effective resistance of resistors connected
in parallel and in series. For example, r89=r8�10�=r9�10�
=0.6667. To unveil the hierarchical structure of graphs with
leaves, i.e., vertices with degree one, we need to proceed as
explained below because well-defined transient classes of
states are only identified for graphs with no local treelike
topology. Suppose we start with a graph with m vertices
�m=10�. If the graph has leaves, we collect leaf after leaf to
remove acyclic branches and we end up with a reduced num-
ber of vertices n �n�m� �32�. After collecting all leaves, we
work with the Laplacian matrix of order n obtained from the
reduced adjacency matrix. During this process we keep track
of the original labels and from where we have removed
leaves. The hierarchical structure of this example is shown in
Fig. 2 as a dendrogram where we have joined the previously
removed leaves �6, 7, and 5� to vertex 3 because they natu-
rally belong to the same community as vertex 3 does. All

5

6

7

1

2

3

4 8

9

10

FIG. 1. A simple graph with a treelike subgraph: vertices 5, 6,
and 7. Our graphs are drawn using VISONE.
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presented dendrograms have their similarity �y axis� D
scaled to be in the range �0, 100�. This allows a comparative
display of their branches with different networks as exempli-
fied in Fig. 6.

C. Zachary karate club network

To illustrate further the meaning of transient classes on
G�V ,E� from global information carried out by D we analyze
two well-known networks that have been reported in the lit-
erature.

The first example �Fig. 3� corresponds to the network of
members of the karate club studied by Zachary �22� and
analyzed by different community finding techniques
�13–15,17,18,20,21,33�. This network contains a single leaf,
member 12. Our analysis leads to the hierarchical structure
shown in Fig. 4 by means of a hierarchical clustering tree,
defining communities at different levels. The two main com-
munities reproduce exactly the observed splitting of the Za-
chary club. Interestingly, a smaller community presented by
the hierarchical tree is clearly identified in Fig. 3. Its mem-
bers are displayed with shaded circles. This small group is
influenced only by its members and has a direct interaction
with the instructor.

D. Ravasz and Barabási square hierarchical network

The second example is shown in Fig. 5. It was designed
by Ravasz and Barabási �7,23� as a prototype of a hierarchi-
cal organization with scale-free topology and high modular-
ity we may encounter in real networks. The network in Fig. 5
was built with the module in �a�. A similar network but with
more connections between vertices can be built with the
module in �b�. The study of Dij reveals community structures
at different hierarchical levels in Fig. 6, respectively, for the
networks generated with the modules �a� and �b�.

The hierarchical trees present similar structures, but the
hierarchical levels in both figures clearly display different
network formation patterns. Moreover, the hierarchical for-
mation pattern of G�V ,E� with branches at different heights
may be seen as a measure of how cohesive those subgroups
are. Thus, the normalized scale for Dij can be used to set
levels of cohesiveness related to community formation.
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8 9 10 2 3 1 4

5 76
FIG. 2. The community structure of the graph in Fig. 1 is de-

picted as a hierarchical tree or dendrogram obtained with the com-
plete linkage method based on the similarity matrix D. Our dendro-
grams are drawn with the data plotting package and programming
language R.
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FIG. 3. The karate club network studied by Zachary. Individual
numbers represent the members of the club and edges represent
their relationships outside the normal activities of the club. Squares
and circles indicate the observed final splitting of the karate club
into two communities led by the administrator �34� and the instruc-
tor �1�. A clear further splitting is identified with shaded circles.
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FIG. 4. The hierarchical structure of the network in Fig. 3 is
shown as a dendrogram obtained with the complete linkage method.
It correctly identifies the two main communities of the karate club.
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FIG. 5. The deterministic hierarchical scale-free model with n
=5 vertices proposed by Ravasz et al. �7,23�. It is built by generat-
ing replicas of the small 5-vertex module �a� shown on the left-hand
side.
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V. WEIGHTS ON THE EDGES

Our method also applies to graphs such that each edge has
a positive real number, the weight of the edge. The structure
of the graph is now represented by the corresponding
weighted adjacency matrix W. It assigns weight wij �0 if
and only if i and j are connected vertices and 0, otherwise.
The concept of the Laplacian matrix extends directly to
weighted edges, L�G�=E�G�−W�G�, where Eii=	 j=1

n wij is
the diagonal weighted matrix whose values are the total
weight of the edges adjacent to vertex i. Again, L�G� is a real
symmetric matrix where the row sums and the column sums
are all zero. Thus, we have the same spectral properties as
the particular case of equal weight wij =1 for all adjacent
vertices i and j. Therefore, the method presented to un-
weighted graphs extends naturally to weighted ones with no
change in the algorithm.

A. Performance on artificial community weighted graphs

We have also verified the performance of our method on
weighted graphs with fixed community structure �34�. Our
test is performed on the same artificial graphs randomly gen-
erated as described in Sec. IV A. The computer generated
graphs have 128 vertices and are divided into four groups of
32 vertices. Here, edges among vertices are randomly chosen
such that the average degree is fixed at 16. The test is per-
formed for the most difficult situation where zout=zin=8.
That is, each vertex has as many adjacent connections to
inside as to outside its community. For each graph, we attach
a weight w�1 to the edges inside each community and keep
the fixed weight 1 for those edges which lie between com-
munities. We evaluate again the fraction of vertices classified
correctly as a function of w. As w increases from the starting
value 1, the weights enhance the community structure. This
is clearly highlighted by our method. Our performance is
demonstrated by the following fractions of correctly classi-
fied vertices, 0.89, 0.94, 0.97, and 0.98, respectively, for w
=1.4,1.6,1.8, and 2. The average fractions were calculated

over 100 randomly generated graphs, with error bars smaller
than 0.01.

B. Identifying cohesive subgroups

As an example, we apply our method to the analysis of
weighted interactions related to the engagement of teachers
in professional discussions �35�. This is a social network
with n=24 members. The edges of the network are weighted
in accordance with the number of professional discussions
between pairs of teachers in a high school, called “Our
Hamilton High,” during the 1992–1993 school year. Teachers
were asked to list and weight the frequency of their discus-
sions in that school with at most five other teachers. This
way of attributing weights leads to a directed network. The
weights should follow a scale running from 1, for discus-
sions occurring less than once a month, to the largest weight
value 4, for almost daily discussions. In this social network,
each vertex number contains characteristics of that teacher
such as gender, race, subject field, room assignment, among
others. To perform our analysis we define the weight of each
edge as the average of two values placed on the edges by the
two interacting teachers. Thus, the weighted network is char-
acterized by edges with real values in the range 0.5–4 that
represent the weighted interactions among the members of
the school. The community structure revealed by our analy-
sis is represented by the dendrogram in Fig. 7. Its structure
exhibits the formation of several communities. For compari-
son with the results in Ref. �35�, we identify the four main
groups. The study of their members reveals largely common
race and gender, in accordance with Ref. �35�. However, we
differ somewhat in identification of members in each group.
This may owe to the fact that our network is weighted by an
average process while Frank in Ref. �35� handles it in the
original directed form.

VI. CONCLUSIONS

In conclusion, random walks on graphs in connection
with electrical networks identify a topological property of
G�V ,E�: transient classes of vertices which we interpret as
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FIG. 6. Hierarchical structures for the formation patterns in Fig.
5. Dendrogram �a� refers to the network generated with module �a�
in Fig. 5 whereas dendrogram �b� refers to the network generated
with module �b�.
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FIG. 7. Hierarchical structure of professional discussions among
teachers at “Our Hamilton High.”
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communities in the original graph. Here we emphasize that
those special classes of vertices are a direct consequence of
effective transition probabilities, which display a global per-
spective about the map of interactions that characterize the
entire graph. We demonstrate performance in identifying
community structures in some examples which are bench-
marks for algorithm validation. Moreover, our method is free
of the procedure of tuning a parameter to identify communi-
ties. Our criterion to define communities depends only on
G�V ,E� and not on any explicit definition of what a commu-
nity structure must be.

It is likely that our proposed algorithm may produce new
insights into large graphs. In this case, applications include
protein-protein interactions and the compartment identifica-
tion in food-web structures. The visual information about
how members form communities along the hierarchical tree

may permit identification and characterization of cohesive
communities.

Note added. Recently it was called to our attention about
a procedure that reduces the size of networks preserving
modularity �32�. The procedure corresponds to replace
groups of vertices by a single one and in this way we end up
with a smaller network. The simpler groups of vertices to be
reduced are hair �which we call leaf� and triangular hair. It is
plausible that all algorithms will benefit from the reduction
of �peripheral� motifs.
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